FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups 
 ProfileProfile   PreferencesPreferences   Log in to check your private messagesLog in to check your private messages   Log inLog in 
Forum index » Electronix » Equipment
〓what is semiconductor?〓
Post new topic   Reply to topic Page 1 of 1 [1 Post] View previous topic :: View next topic
Author Message
lima-sz
electronics forum beginner


Joined: 06 Dec 2007
Posts: 13

PostPosted: Thu Dec 06, 2007 1:49 am    Post subject: 〓what is semiconductor?〓 Reply with quote

〓what is semiconductor?〓

Overview

Semiconductors are very similar to insulators. The two categories of solids differ primarily in that insulators have larger band gaps energies that electrons must acquire to be free to flow. In semiconductors at room temperature, just as in insulators, very few electrons gain enough thermal energy to leap the band gap, which is necessary for conduction. For this reason, pure semiconductors and insulators, in the absence of applied fields, have roughly similar electrical properties. The smaller bandgaps of semiconductors, however, allow for many other means besides temperature to control their electrical properties.

Semiconductors' intrinsic electrical properties are very often permanently modified by introducing impurities, in a process known as doping. Usually it is reasonable to approximate that each impurity atom adds one electron or one "hole" (a concept to be discussed later) that may flow freely. Upon the addition of a sufficiently large proportion of dopants, semiconductors conduct electricity nearly as well as metals. The junctions between regions of semiconductors that are doped with different impurities contain built-in electric fields, which are critical to semiconductor device operation.

In addition to permanent modification through doping, the electrical properties of semiconductors are often dynamically modified by applying electric fields. The ability to control conductivity in small and well-defined regions of semiconductor material, statically through doping and dynamically through the application of electric fields, has led to the development of a broad array of semiconductor devices, like transistors. Semiconductor devices with dynamically controlled conductivity are the building blocks of integrated circuits, like the microprocessor. These "active" semiconductor devices are combined with simpler passive components, such as semiconductor capacitors and resistors, to produce a variety of electronic devices.

In certain semiconductors, when electrons fall from the conduction band to the valence band (the energy levels above and below the band gap), they often emit light. This photoemission process underlies the light-emitting diode (LED) and the semiconductor laser, both of which are tremendously important commercially. Conversely, semiconductor absorption of light in photodetectors excites electrons from the valence band to the conduction band, facilitating reception of fiber optic communications, and providing the basis for energy from solar cells.

Semiconductors may be elemental materials, such as silicon, compound semiconductors such as gallium arsenide, or alloys, such as silicon germanium or aluminium gallium arsenide.


Energy-momentum dispersion
In the preceding description an important fact is ignored for the sake of simplicity: the dispersion of the energy. The reason that the energies of the states are broadened into a band is that the energy depends on the value of the wave vector, or k-vector, of the electron. The k-vector, in quantum mechanics, is the representation of the momentum of a particle. The E-k relationship varies from material to material.
The effective mass is important as it effects many of the electrical properties of the semiconductor, such as the electron or hole mobility, which in turn influences the diffusivity of the charge carriers and the electrical conductivity of the semiconductor.

Typically the effective mass of electrons and holes are different. This affects the relative performance of p-channel and n-channel IGFETs, for example (Muller & Kamins 1986:427).

The top of the valence band and the bottom of the conduction band might not occur at that same value of k. Materials with this situation, such as silicon and germanium, are known as indirect bandgap materials. Materials in which the band extrema are aligned in k, for example gallium arsenide, are called direct bandgap semiconductors. Direct gap semiconductors are particularly important in optoelectronics because they are much more efficient as light emitters than indirect gap materials.
〓lima electronics(Shenzhen)ltd〓
★we are one of the leading agent in China who specialize in the distribution of international well-known power module★
★compared with our competitors, we're famous for the upstanding reputation and high quality of business service★
〓about us〓
Founded in july 1997, lima electronics mianly work on the sales of power module, fixing eyes on the market of the industrical line such as transducer、electric welding machine and USP ect.We chronically offer IGBT、IGCT、GTR、IPM、PIM 、SCR、 rectifier bridge、 fast recovery diodes、 soft recovery diodes、 fast Fuse ect with the international well-known brand ,which are producted by America、Japan、German、England、Spain、Switzerland and ect.
〓support Mfg〓
1.MITSUBISHI 2.FUJI 3.TOSHIBA
4.SANREX 5.SANKEN 6.HITACHI
7.SEMIKRON 8.SIEMENS 9.IXYS
10.IR 11.EUPEC 12.INFINEON
13.FAIRCHILD 14.TYCO 15.MOTOEOLA
16.SHINDENGEN 17.WESTCODE 18.HINODE
19.BUSSMANN 20.CATELEC 21.MAXIX
22.ABB 23.APT 24.OMRON
25.VICOR 26.LAMBDA 27.COSEL
28.TDK 29.ASTEC 30.LUCENT
31.PRX 32.GOULD 33.FERRAZ
34.SIRECT 35.DYNEX 36.Fine SPN
〓products〓:IGBT、IGCT、GTR、IPM、PIM 、SCR、 rectifier bridge、 fast recovery diodes、 soft recovery diodes、fast Fuse.
◆◆◆Please feel free to contact us!◆◆◆
CONTACT ME: Mr zhou/Wendy(miss zhou)
ICQ:381-125-865
MSN: sz-lima@hotmail.com
QQ :173943820
Tel: 86-755-88364656
Fax: 86-755-88364656
E-mail: lima003@21cn.com
Back to top
Google

Back to top
Display posts from previous:   
Post new topic   Reply to topic Page 1 of 1 [1 Post] View previous topic :: View next topic
The time now is Thu Jun 29, 2017 8:56 am | All times are GMT
Forum index » Electronix » Equipment
Jump to:  

Similar Topics
Topic Author Forum Replies Last Post
No new posts Avago agent〓86-755-8836 5152 China lima-sz Equipment 0 Fri May 13, 2011 10:24 am
No new posts Avago agent〓86-755-8836 5152 China lima-sz Equipment 0 Fri May 13, 2011 10:24 am
No new posts 〓How to Read Datasheets〓 lima-sz components 0 Thu Dec 06, 2007 1:43 am
No new posts NTE/EGG semiconductor cross-reference page Electromotive Guru components 0 Wed Jun 07, 2006 7:52 am
No new posts semiconductor achhu Basics 0 Tue Jun 06, 2006 7:24 am

Copyright © 2004-2005 DeniX Solutions SRL
Other DeniX Solutions sites: Unix/Linux blog |  Unix/Linux documentation |  Unix/Linux forums |  Medicine forum |  Science forum  |  Send and track newsletters


Powered by phpBB © 2001, 2005 phpBB Group